PUBLIC HEALTH REPORTS

CURRENT PREVALENCE OF COMMUNICABLE DISEASES IN THE UNITED STATES ${ }^{1}$

November 30-December 27, 1930

The prevalence of certain important communicable diseases, as indicated by weekly telegraphic reports from State health departments to the Public Health Service, is summarized below. The underlying statistical data are published weekly in the Public Health Reports under the section entitled "Prevalence of Disease."

Poliomyelitis.-The poliomyelitis incidence has shown another decline, this time about 60 per cent from the incidence of the preceding period. In a group of 43 States, 294 cases were reported, as compared with 725 during the preceding period.

Part of this decline, though not all, represents a normal seasonal drop. The current incidence is about 3.3 times the incidence for the corresponding period of last year, whereas, during the preceding period the ratio to last year was slightly above 4 . In other words, the picture suggests a moderate decline in epidemic tendency in this relative sense as well as in an absolute sense.

Judged by these ratios to last year's experience, the epidemic tendency seems to be declining in all regions except some portions of the South and East.

Meningococcus meningitis.-During the current 4 -week period, 363 cases of meningococcus meningitis were reported, representing about 54 per cent of the incidence for the corresponding period of last year. During the preceding period of this year 319 cases were reported, i. e., about 72 per cent of the cases for the corresponding period of last year. In other words, the situation continues to improve in relation to last year.

Smallpox.-During the current period 1,966 cases of smallpox were reported, as compared with 3,897 during the same period last year, when there had been a pronounced rise. The current incidence is not far from the average of the years preceding 1929.

Influenza.-The incidence continues to be the lowest of recent years for the season involved. Reported cases numbered 2,361, as

[^0]compared with 3,307 during the same period of last year, i. e., a decline of about 30 per cent. This favorable situation applies to all regions except the Great Lakes section, where a slight excess was reported over last year's incidence.

Typhoid fever.-The reported incidence of typhoid fever (1,070 cases) for the current period represents a drop of about 44 per cent in four weeks. This decline represented largely the normal scasonal influence. In relation to the experience of the preceding two years, the current incidence is still about 50 per cent in excess. It is high in all regions except the Great Lakes and the far West.

Scarlet fever.-For the country as a whole, the incidence of scarlet fever is not far from the seasonal average of recent years, 13,470 cases having been reported, against 15,203 last year, for this period.

Diphtheria.-Once again there is a record low prevalence of diphtheria, taking due account of season; reported cases numbered 5,529 , as compared with 7,592 for the same period last yeur-a decline of about 25 per cent. Three years ago, during the corresponding 4 -week period, 9,097 cases were reported.

All regions share in this gratifying situation, though in different degrees.

Measles.-The reported incidence of measles, 11,529 cases, is low in relation to recent years. Since 1926, when 21,371 cases were reported during these four weeks, there has been a decline each year. During the four years the decline has been almost 50 per cent. There are reasons for suspecting, however, that part of the decline may be due to less complete reporting during recent years.

Mortality, all causes.-During the current period, the mortality from all causes as reported by the Census Bureau averaged 11.9 per thousand population, annual basis, compared with 13.3 during this period last year.

AGE INCIDENCE OF COMMUNICABLE DISEASES IN A RURAL POPULATION ${ }^{1}$

> By Edgar Sydenstricker, Statistician, United States Public Health Setvice, and Director, Division of Research, Milbank Memorial Fund, and Selwyn D. Collins, Associate Statistician, United States Public Health Service

The importance of data relating to the incidence of the acute infectious diseases among persons of different ages in populations living in various environments does not need lengthy explanation; it is fully realized because of the aid which information of this kind can give to epidemiology, to sound administrative practice, and to

[^1]some degree to immunology. The valuable records collected in Providence over a long period of years by Chapin (1) constituted the earliest as well as one of the most useful contributions to a mass of data that slowly have been growing since. Among other contributions may be mentioned the studies of Butler (2), Corney (3), Collins (4), Henderson (5), Halliday (6), Doull (7), Frost (8), Fales (9), Godfrey (10), Lombard and Scamman (11), Sydenstricker (12), and Wilson (18), which have recently been summarized by one of us (S. D. C.) (4). Practically all of these studies, with the exception of those by Fales and by Lombard and Scamman relate, however, to urban populations.

The present communication, while including a comparatively small number of persons, may be of interest because it deals with a rural population in Cattaraugus County, N. Y., where the Milbank Memorial Fund has been assisting the development of public health activities and where the United States Public Health Service, with the cooperation of the fund and the county health department, began a morbidity study and a series of epidemiological studies in 1929. The data presented here are of two kinds: (1) The reports of certain communicable diseases made to the county health department during the period 1925-1929, classified according to age of the person attacked and residence, the latter being with respect to the degree of rurality of the population; (2) histories of prior attacks of certain communicable diseases among persons of different ages which were obtained by field assistants of the United States Public Health Service in the course of house-to-house visits in a population of approximately 5,000 in one area-of this county. The first set of records enables comparisons to be made similar to those published by Fales for broad urban and rural groups, but with finer distinction as to the rural character of a population which he classified as rural. The second set of data are similar to those obtained by Frost in Baltimore, Lombard and Scamman in Massachusetts, and by Sydenstricker and Collins in Hagerstown, and are comparable, in a lesser degree, to the results of studies made by some others to whom reference will be made later.

The reports made to the county health department during the period 1925-1929 included 3,156 cases of measles, 563 cases of scarlet fever, 495 cases of German measles, 1,456 cases of whooping cough, the other diseases being too few in number to yield significant results. These have been subdivided according to age and according to type of locality, as follows: (a) Cases occurring in Olean, a city of about 23,000; (b) in villages of not over a few hundred population; (c) among persons living on farms, designated as "rural." The distri-
buṭions according to age groups for these four diseases are given in Table I. ${ }^{2}$

Table I.-Comparison of distributions according to age of reported cases of measles, scarlet fever, and whooping cough in Olean, villages, and rural part of Cattaraugus County, 1925-1929

Age	Per cent			Number		
	Olean	Villages	Rural	Olean	Villages	Rural
MEASLES						
0 to 4.	33. 29	20. 40	16.81	472	134	182
5 to 9	54. 80	44. 44	31.54	777	292	341
10 to 14.	7.62	20.55	24.14	108	135	261
15 to 19	1.90	7.31	13.78	27	48	149
$20+$	2.40	7.31	13.69	34	48	148
Total	100.00	100.00	100.00	1,418	657	1, 081
SCARLET FEVER						
0 to ${ }^{\text {a }}$	23.19	20.00				
5 to 9	37.68	37.90	31. 03	78	36	81
10 to 14.	18. 36	20.00	28.74	38	19	75
15 to 19.	7.25	11.58	9. 58	15	11	25
$20+$	13.53	10.53	16.09	28	10	42
Total	100.00	100.00	100.00	207	95	-261
WHOOPING COUGH						
0 to 4	49. 76	52.36	37.39	312		
5 to 9	45. 29	43.31	41.39	284	110	238
10 to 14	3.19	3.15	16.35	20	8	94
15 to 19.	1.12	. 39	2.78	7	1	16
20+.---	. 64	. 79	2.09	4	2	12
Total	100.00	100.00	100.00	627	254	575

The differences in the age distributions can be shown in more detail for measles because of the larger number reported. The distributions are given by single years up to 15 years of age in Table II and plotted in Figure 1. The concentration of cases at the ages when children enter school is marked and may be due in part to more complete reporting at those ages, but the contrast in the distributions is quite striking, particularly between the town of Olean and the rural part of the county.

[^2]Age distributions of population under 20 years in Olean and rural part of Cattaraugus County (State census, 1925)

Age group	Per cent (all ages $=100$ per cent)	
	Olean	Rural part *
0 to 4.	9. 53	9.13
5 to 9	9. 91	9.68
10 to 14	9.25	9.41
15 to 19..	9.13	8.70

- Exclusive of Salamanca (10,000 population) and Gowanda, but including villages.

Figurs 1.-Distribution according to single years of age, up to 15 years, of measles cases reported to the county health department for Olean, villages, and rural part of Cattaraugus County, N. Y., 1925-1929

Table II.-Comparison of distribution according to age of reported cases of measles in Olean, villages, and rural part of Cattaraugus County, 1925-1929

Age	Per cent			Number		
	Olean	Villages	Rural	Olean	Villages	Rural
-1.	289	0.91	250	41	6	27
1.	4.58	2.44	1.94	65	16	21
2	6.63	5. 78	3. 70	94	38	40
3.	8.96	4.57	4.07	127	30	44
	10. 23	6. 70	4.63	145	44	50
5.	14.88	6.85	5.00	211	45	54
6	16.01	9.74	5.27	227	64	57
7	10. 72	10.65	8.79	152	70	95
8.	7.55	8.68	6.94	107	57	75
9.	5. 64	8.52	5.55	80	56	60
10.	2.89	7.46	6.20	41	49	67
11.	2.28	4.28	4.16	32	28	45
12.	1.13	3.50	4.90	16	23	53
13.	. 71	2.44	4.35	10	16	47
14	. 63	289	4.53	9	19	49
15-19.	1.90	7.31	13.78	27	48	149
$20+$	2.40	7.31	13.69	34	48	148
Total	100. 00	100.00	100.00	1,418	657	1,081

The indications are summarized in the following table (Table III) where a comparison is presented of the first quartile, median, and last percentile of the age distributions for each disease in the areas named.

Table III.-Comparison of first quartiles, medians, and last percentiles of the age distributions of the reported cases of certain diseases in specified sections of Cattaraugus County, 1925-1929

Disease	Age in years		
	Olean	Villages	Rural
Measles:			
First quartile.	4.2	6.7	6.6
Median......	6.1	8.3	10.3
Last percentile.	10.7	17.6	24.7
Scarlet fever:			
First quartile.	5. 2	5. 8	6.6
Median	7.9	8.7	11.0
Last percentile.	20.0	23.0	28.0
Whooping cough:			
First quartile.	2.9	2.7	3.5
Median....-	5.0	4.8	6.5
Last percentile- erman measles:	8.5	9.0	12.7
First quartile.	17.2		
Median....-	19.7		
Last percentile.	${ }^{1} 15.7$		

${ }^{1}$ Including Salamanca, a town of 10,000 population.
It will be noted that, with hardly an exception, the more rural the population-even within an area ordinarily classified as "rural"the higher are the ages at which each of these diseases occur. This finding is not only in accord with the statistical results of Fales's (9) comparisons of "urban" and "rural" data but adds weight to his general conclusion that for any one of the diseases under consideration "the difference in risk (of attack) between younger and older children tends to become less pronounced as one proceeds to the small cities, villages, and open country" (p. 780).

Reports of cases of most diseases notifiable under law are notoriously incomplete, especially the less fatal diseases over which no really effective control has been devised. In general, this has been true of Cattaraugus County. ${ }^{3}$ Moreover, there is evidence to sup-

[^3]Completeness of reporting of certain diseases among 540 school children in Olean, N. Y., 1926-1987 and 1927-1928

Disease	Cases recorded on school sickness report	Cases reported to health department	Complete ness of reporting
			Per cent
Scarlet fever.	4	4	100
Measles......	55	34	62
Whooping cough.	21	10	48
German measles.	95	22	23
Chicken pox-----	13	0	0

These percentages are in general agreement with those found by Sydenstricker (14) for Hagerstown, Md. They indicate somewhat more complete reporting of measles and whooping cough and less complete reporting of chicken pox in Olean than in Hagerstown.
port the natural suspicion that the completeness of reporting of at least some of these diseases varies with age, ${ }^{4}$ and any comparison of the age distributions for different areas must be made upon the assumption that these variations are similar. Obviously, therefore, any data that yield reasonably accurate information on the true incidence of these diseases are of value, particularly for rural areas.

In the initial canvass of approximately 5,000 persons in a rural part of Cattaraugus County, who form the population group for epidemiological observation by the United States Public Health Service, questions as to the past occurrence of certain communicable diseases were asked for all individuals under 30 years of age in the households visited. The informants in most instances were the housewives and the answers are believed to be as accurate as they could give them. Obviously, cases that did not manifest definite clinical characteristics were not recognized and therefore were not known, and probably some cases were forgotten, especially for older persons. The data thus must be regarded as understatements to a certain degree. They are summarized in Table IV.
Table IV.-History of communicable disease among persons of different ages in a rural area of Cattaraugus County, N. Y.

Disease	Per cent of persons observed who at some time in their lives had suffered attacks, classified by age at date of inquiry						
	Total under 30	Under 5	5 to 9	10 to 14	15 to 19	20 to 24	25 to 29
Measles.	62.3	17.6	46.0	67.6	78.8	83.7	88.6
German measles.	26.5	6.3	13.3	25.8	35.8	43.0	40.5
Whooping cough	60.4	19.2	46.7	71.0	77.1	78.0	77.6
Chicken pox....-	51.6	12.9	43.6	63.5	66.4	66.0	62.6
Mumps --.	36.4	11.5	26.8	40.2	45.1	49.8	50.1
Scarlet fever	9.5	. 9	6.0	11.5	14.2	13.0	12.8
Diphtheris.	1.7	0	. 8	1.0	2.4	2.9	3.7
Typhoid fever.	1.4	0	. 4	. 5	2.2	2.2	3.7
Smallpox---	. 4	0	0	. 7	0	. 7	1.1
Meningitis	. 1	0	. 2	1.0	0	.2	$0^{.3}$
Poliomyelitis.	. 4		. 4	1.0		. 2	0
Number of persons observed	2,491	426	483	414	410	408	352

[^4]Estimated completeness of reporting to the health department of certain communicable diseases at specific ages, Hagerstown, Md., 1982 and 1925

Age	Estimated per cent of cases that were reported		
	Measles	Whooping cough	$\underset{\text { pox }}{\text { Chicken }}$
0 to 4.	21.4	17.0	12.2
5 to 9	41.6	18.4	24.3
10 to 14.	34.4	40.6	42.9
15+...-	50.0	10.0	50.0

The Cattaraugus results in general approximate the findings of Lombard and Scamman (11) for Shelburne and Buckland Townships in Massachusetts, which were largely rural; for some diseases (chicken pox, measles, and whooping cough) the percentages having histories of past attacks are strikingly similar, although the number of persons observed in the Massachusetts area is quite small. ${ }^{5}$

The particular point of interest afforded by the foregoing data lies in a comparison with similar data for urban areas. In Table V, therefore, such a comparison of the Cattaraugus County results is made with the results of a similar study in Hagerstown, Md., a city of some 30,000 inhabitants, where the same method (16) of obtaining information and, to some extent, the same field personnel were employed.

Table V.-Comparison of communicable disease history among persons of different ages in an urban area (Hagerstown, Md.) with that in a rural area (in Cattaraugus County, N. Y.)

Disease and area	Per cent of persons observed who at some time in their lives had suffered attacks, classified by age at date of inquiry					
	Under 5	5 to 9	10 to 14	15 to 19	20 to 24	25 to 29
Measles:						
Cattaraugus.-	17.622.3	46.075.8	67.692.8	78.893.0	83.793.8	88.691.1
Hagerstown.-						
Whooping cough:	$\begin{aligned} & \text { 19.2 } \\ & 17.6 \end{aligned}$	$\begin{aligned} & 46.7 \\ & 56.9 \end{aligned}$		77.1	78.079.4	
Hagerstown..			71.0 76.3			77.6 78.2
Scarlet fever:						
Cattaraugus.	.91.7	6.04.6	11.5	14.210.8	13.0	12.810.5
Hagerstown.					9.4	
Diphtheria:		.85.6				
Hagerstown.	0 1.8		$\begin{aligned} & 1.0 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 8.6 \end{aligned}$	$\begin{array}{r} 2.9 \\ 12.2 \end{array}$	3.7 11.8
Typhoid fever:						
Cattaraugus.	${ }^{0} .1$	1.4	3. ${ }^{5}$	$\begin{gathered} 2 . \\ 5 \end{gathered}$	2.29.2	12.8
Hagerstown.						
Smallpox:						
Cattaraugus	${ }^{0} .5$	$\begin{aligned} & 0 \\ & 1.9 \end{aligned}$	$\begin{array}{r} .7 \\ 2.3 \end{array}$	$\begin{aligned} & 0 \\ & 1.6 \end{aligned}$.71.1	$1: 1$
Hagerstown.						
Number of persons observe Cattaraugus						$\begin{aligned} & 352 \\ & 528 \end{aligned}$
Hagerstown.----	$\begin{aligned} & 426 \\ & 840 \end{aligned}$	$\begin{aligned} & 483 \\ & 915 \end{aligned}$	$\begin{aligned} & 414 \\ & 760 \end{aligned}$	$\begin{aligned} & 410 \\ & 610 \end{aligned}$	406 485	

[^5]Contagious diseases in Shelburne-Buckland

Disease	Per cent who had the disease prior to the survey, by age groups			
	0 to 4	5 to 9 -	10 to 14	15 to 19
Chicken pox	15.6	41.8	61.1	60.7
Diphtheria..	0	2.0	4.4	8.3
German measles.	4.1	23.5	33.3	22.6
Measles.-	9.0	29.6	63.4	69.1
Mumps.....	1.6	10. 2	18.9	35.7
Scarlet fever .-.	0.8	10.2	14.4	35.7
Whooping cough	24.6	55.0	74.5	71.4
Number of persons	122	98	90	84

It will be noted that the percentages are essentially cumulative and are comparable.
The lower percentages for Cattaraugus and the lag in the curves, as plotted in Figures 2 to 6, for all of the diseases except scarlet fever, are of particular interest.

Figures 2-6.-Percentages of a rural population (in Cattaraugus County, N. Y.) and of an urban population (in Hagerstown, Md.), of different ages, who had previously suffered an attack of measles, whooping cough, scarlet fever, diphtheria, or typhoid fever, as ascertained by canvasses of households

As regards scarlet fever, a reasonable explanation of the apparent exception may be suggested by the occurrence of epidemics of unusual magnitude in the Cattaraugus area during 1920-1923 and 1926-27, ${ }^{6}$ whereas no epidemic of similar magnitude had occurred in Hagerstown in a period comparable chronologically.

[^6]As regards diphtheria, the curves for the two areas are far apart at every age period, the Cattaraugus percentages suggesting a definite "lag",' and the proportion of adult persons aged 25 to 29 years with a history of a previous attack in Hagerstown being over three times as high as that in the rural area. This lower prevalence of diphtheria in a rural area properly can be interpreted, in the light of the newer knowledge of the epidemiology of diphtheria, as indicating a lower immunity to the disease particularly among children under 15 years of age. The importance of this from the administrative point of view has been well recognized by Dr. R.M. Atwater, the commissioner of health for Cattaraugus County, in extending the age for immunization with toxin-antitoxin up to 15 years (17) (18) instead of up to 10 years, as is the usual practice in cities. The protection thus afforded has had some effect upon the diphtheria case rate during the past five years ${ }^{8}$ (the immunization having been begun in 1925), particularly among younger persons, and may have accentuated slightly the lag in Figure 5. But obviously the contrast with the Hagerstown situation is not greatly affected, especially in a period of low diphtheria incidence, such as has been general in New York. Practically no diphtheria immunization in Hagerstown had been done before the study was made.
With respect to typhoid and smallpox, the interpretations of the data obviously are somewhat different. Hagerstown had an aṇnual typhoid rate (in the population group observed for over two years) of 1.2 per $1,000(16)$ which was probably typical of the section in 1922-23, and its water supply and excreta-disposal systems were by no means modern (19). The typhoid rate in Cattaraugus had not been unusual, except for the marked outbreak in 1928 in Olean, which is 30 miles away from the morbidity observation area. There seems to be no good reason why the much higher typhoid percentages in Hagerstown should not be regarded as an illustration of the relative freedom of a rural population from the disease when compared with an urban population living under insanitary conditions. The

[^7]| Age | Per cent immunized | Age | Per cent immunized |
| :---: | :---: | :---: | :---: |
| 0 to 4. | 31.5 | 15 to 19..- | 29.7 |
| 5 to 9 | 65.6 | 20 to 24. | 7.3 |
| 10 to 14 | 64.6 | 25 to 29... | 3.1 |

[^8]relatively small opportunity for contact in a rural area is an even greater factor in the wide difference in smallpox incidence, and this in spite of the fact that a much larger proportion of persons had been vaccinated in Hagerstown than in Cattaraugus County in all of the age periods considered save "under 5 " as the following table shows:

Table VI.-Comparison of the history of vaccination against smallpox among persons of different ages in an urban area (Hagerstown, Md.) with that in a rural area (in Cattaraugus County, N. Y. $)^{1}$

Area	Per cent of persons observed who had been vaccinated against smallpox, classified by age at date of incuiry						
	Total under 30	0 to 4	5 to 9	10 to 14	15 to 19	20 to 24	25 to 29
Cattaraugus	24.8	3.0	11.8	18.2	21.6	42.4	60.2
Hagerstown.-.....	69.8	1.5	65.1	93.7	97.8	94.3	91.8

1 See Table V for the number of persons observed. The percentages are for persons, not frec, uencies of vacaination, but they indicate roughly the extent to which vaccination was done in the two areas at different ages.

By no stretch of the imagination, of course, can this observation as to smallpox incidence be regarded as suggesting the inefficacy of vaccination; rather, it points the more definitely to the importance of differences in the opportunity for infection in urban and rural areas.

The "lag" in the curves shown in Figures 2, 3, and 5 for measles, whooping cough, and diphtheria in Cattaraugus may be expected upon the hypothesis of a slower rate of immunization in a more sparsely settled area. But in the instances of measles and whooping cough, the rather interesting indication is given that in both a rural and an urban area the percentages of persons in the age period 25 to 29 who had been attacked are about the same. ${ }^{10}$

A further comparison of the Cattaraugus County data, scanty as they are, with the curves which Collins (4), derived from a study of the records of a number of localities, nearly all of which were urban, is not without interest. For measles (fig. 7) and whooping cough (fig. 8) it is again indicated that in both a rural area and in these larger urban areas the percentages of total population observed which had positive histories were approximately the same when about 30 years of age was reached, but the Cattaraugus experience manifested a very definite lag.

[^9]In the Cattaraugus survey an inquiry was also made as to deaths among children of each family and information was obtained as to age, date, and cause of death. This made possible a tabulation of persons having had attacks of certain communicable diseases among

Figure 7.-Percentages of the population of different ages who had previously suffered an attack of measles, compared for a rural area in Cattaraugus County, N. Y., and for various localities, principally urban. The smoothed graph for "urban" is of the catalytic type of the logistic curve, the equation being $y=89\left(1-\epsilon^{+} .0058-.0085-.02800=2\right)$ where $y=$ percentage of persons who have had an attack and $x=$ age in years
persons under 30 years of age and of the deaths occurring among such persons due to the specified diseases. Fatality rates were then computed that probably are much more accurate than those based upon reported cases in rural areas, as follows:

Figure 8.-Percentages of the population of different ages who had previously suffered an attack of whooping cough, compared for a rural area in Cattaraugus County, N. Y., and for various localities, principally urban. The smoothed graph for "urban" is of the catalytic type of the logistic curve, the equation being $y=77\left(1-e^{-.05355-.01334-.027 c 3 z 2}\right)$ where $y=$ percentage of persons who have had an attack and $x=$ age in years

Table VII.-Case fatality of the common communicable diseases in a rural population in Cattaraugus County, N. Y., based on cases and deaths occurring at any time since birth among persons under 30 years of age

Similar information was not obtained in the Hagerstown survey, but a comparison with fatality rates in another urban area will be made later.

ACKNOWLEDGMFNTE

Acknowledgments are made to Dr. R. M. Atwater, commissioner of health, Cattaraugus County, for the use of communicable-disease records in the county health department. The histories of communicable diseases in a rural population were obtained from residents in the Ellicottville area of Cattaraugus County, to whom grateful acknowledgment is made, under the supervision of Miss F. Ruth Phillips of the United States Public Health Service. We are also indebted to Dr. G. A. Baker for making the tabulation of reported cases in Cattaraugus County.

REFERENCES

(1) Chapin, C. V.: Annual Reports of the Health Department, Providence, R. I., for various years. Also Measles in Providence, R. I., 1858-1923. Am. Jour. Hyg., Vol. V, No. 5, September, 1925, pp. 635-655.
(2) Butler, Wm.: Measles. Proc. Royal Soc. Med., Vol. VI, part 2, pp. 120137 (1912-13).
(3) Corney, B. G.: The Behavior of Certain Epidemic Diseases in Natives of Polynesia, with especial reference to the Fiji Islands. Trans. Epidem. Soc. of London, 1883-84, pp. 76-95.
(4) Collins, S. D.: Age Incidence of the Common Communicable Diseases of Children. Pub. Health Rpts., Vol. 44, No. 14, April 5, 1929. (Reprint 1275.)
(5) Henderson, E. C.: A Census of Contagious Diseases of 8, 786 Children (London, Canada)، Am. Jour. Pub. Health, vol. 6, No. 9, September, 1916.
(6) Halliday, J. L.: An Inquiry into the Relationship between Housing Conditions and Incidence and Fatality of Measles. Special Report No. 120, Medical Research Council (British), His Majesty's Stationery Office, London, 1928.
(7) Doull, James A.: Factor Influencing Selective Distribution in Diphtheria. Journ. Prev. Med., Vol. 4, No. 5, September, 1930.
(8) Frost, W. H.: Infection, Immunity, and Disease in the Epidemiology of Diphtheria, with special reference to some studies in Baltimore. Jour. Prev. Med., Vol. II, No. 4, July, 1928.
(9) Fales, W. T.: The Age Distribution of Whooping Cough, Measles, Chicken Pox, Scarlet Fever, and Diphtheria in Various Areas in the United States. Am. Jour. Hyg., Vol. VIII, No. 5, pp. 759-799, September, 1928.
(10) Godfrey, E. S.: The Age Distribution of Communicable Diseases According to Size of Community. Am. Jour. Pub. Health, Vol. XVIII, No. 5, pp. 616-631, May, 1928.
(11) Lombard, Herbert L., and Scamman, Clarence L.: A Morbidity Survey of Shelburne-Buckland. New Eng. Jour. Med., Vol. 198, No. 12, pp. 625-629, May 10, 1928.
(12) Sydenstricker, Edgar: The Incidence of Various Diseases According to Age. Hagerstown Morbidity Studies No. VIII. Pub. Health Rep., Vol. 43, No. 19, May 11, 1928, pp. 1124-1156. (Reprint No. 1227.)
(13) Wilson, G. N.: Measles: Its Prevalence and Mortality in Aberdeen, Scotland. Report of the Medical Officer of Health, City of Aberdeen, Scotland, for 1904, pp. 41-51.
(14) Sydenstricker, Edgar: The Reporting of Notifiable Diseases in a Typical Small City. Hagerstown Morbidity Studies, No. II. Public Health Rep., Vol. 41, No. 41, October 8, 1926, pp. 2186-2191. (Reprint No. 1116.)
(10) Sydenstricker, Edgar, and Hedrich, A. W.: Completeness of Reporting of Measles, Whooping Cough, and Chicken Pox at Different Ages-Hagerstown Morbidity Studies: Supplement to Study No. II. Pub. Health Rep., Vol. 44, No. 26, June 28, 1929, pp. 1537-1543. (Reprint No. 1294.)
(16) Sydenstricker, Edgar: A Study of Illness in a General Population Group. Hagerstown Morbidity Studies No. I: The Method of Study and the General Results. Pub. Health Rep., vol. 41, No. 39, September 24, 1926, pp. 2069-2088. (Reprint No. 1113.)
(17) Public Health in Cattaraugus County. Sixth Annual Report of Cattarsugus County Board of Health, 1928, p. 25.
(18) Milbank Memorial Fund: Report for year ended Dec. 31, 1928, pp. 48-52.
(19) Sydenstricker, Edgar: Economic Status and the Incidence of Illness. Hagerstown Morbidity Studies No. X. Pub. Health Rep., Vol. 44, No. 30, July 26, 1929. pp. 1822-23. (Reprint No. 1303.)

PLANKTON IN RELATION TO THE NATURAL PURIFICATION OF POLLUTED STREAMS

Reedbirds and ducks so frequently seen in their natural feeding ground, such as a marsh, excite no comment, whereas a few buzzards circling low will attract attention at once, because of the very different food habits of the latter. We know that an animal carcass is in the marsh, and that the buzzards will speedily dispose of it. Reedbirds, ducks, and buzzards all react to the presence of food.

In somewhat similar fashion the microscopic animals in water are attracted by certain materials which serve as their food. Organic matter, such as sewage, provides food for certain kinds of organisms that are not present in unpolluted water. Finding these organisms, we know that the water is polluted, and that these particular organisms will disappear, like the buzzards, when and if their food supply is exhausted.

In order to learn more about the amount and kind of work done by these organisms in nature's purification of such a polluted stream, a study ${ }^{1}$ was made of the much-discussed Illinois River, heavily polluted by the sewage and stockyards waste from the city of Chicago, and well suited to a study of this phase of microscopic life. Approximately 1,000 weekly samples, collected at every season, and including all sections of the river (which is nearly 300 miles long), were analyzed and studied. Particular information was sought relative to the abundance of such organisms as thrive in sewage-polluted water, and their gradual replacement downstream by organisms known to require water of a better grade. The gradual purification of the stream was thus expressed in terms of the prevalent kinds of microscopic organisms, both plants and animals, and collectively known as plankton.

[^10]The relative abundance of microscopic green plants was a matter of interest, inasmuch as these plants help to purify the water by the oxygen they give off, similar to the action of the common "fish moss" in goldfish bowls.

Very briefly summarized, the results of this study indicate the following charges as the water progresses:

1. The swift upper portion of the river, heavily polluted but thoroughly mixed, is well seeded at the start with microscopic organisms from the tributary Des Plaines River and from Lake Michigan.
2. Gradually decreasing velocity distributes the suspended matter over a very large total area of bottom downstream, facilitating biological action.
3. The grayish water becomes clear, and loses its odor of sewage 70 or 80 miles downstream from the Chicago Drainage Canal outlet.
4. Correlated changes in the plankton content are: (a) decrease of pollutional organisms formerly predominant; (b) increase of organisms of the cleaner-water kinds, these becoming predominant, and maintaining this status thereafter; (c) increase in relative abundance of microscopic green plants.
5. In all sections of the river, and at all seasons, the microscopic green plants were decidedly more abundant, volume for volume, than were the microscopic animals.
6. Malodorous bottom sediments from the polluted upper Illinois contained very large numbers of "sludge worms," and no gill-bearing insect larvæ, whereas sediments from the lower portions of this stream were free of odor, contained very few worms, and showed a variety of gill-breathing insect larvæ.

A suitable background for the above study is furnished by $11 \mathrm{ab}-$ stracts of similar studies made by various investigators on other streams and on the Illinois River. The large amount of data relative to the Illinois River is summarized in 54 tables and 18 graphs. There are also a number of photographs showing field conditions, and some photomicrographs of the more important plankton organisms.

COURT DECISION RELATING TO PUBLIC HEALTH

Conviction for exposing a person to venereal disease.-(Oklahoma Criminal Court of Appeals; Reynolds v. State, 292 P. 1046; decided Aug. 29, 1930.) Section 9008 of the Compiled Oklahoma Statutes, 1921, provided as follows:

Any person who shall, after becoming an infected person and before being discharged and pronounced cured by a reputable physician in writing, marry any other person, or expose any other person by the act of copulation or sexual intercourse to such venereal disease or to liability to contract the same, shall be guilty
of a felony and upon conviction shall be punished by confinement in the penitentiary for not less than one year or not more than five years.

Under this statute the plaintiff in error, defendant in the trial court, was convicted of exposing a female to gonorrhea. This conviction, with the sentence modified because of certain circumstances, was affirmed by the criminal court of appeals.

DEATHS DURING WEEK ENDED DECEMBER 27, 1930

Summary of information received by telegraph from industrial insurance companies for the week ended December 27, 1930, and corresponding week of 1929. (From the Weekly Health Index issued by the Bureau of the Census, Department of Commerce)

Commerc)	Week ended December 27, 1:30	Corresponding week, 1929 week, 1929
Policies in force	74, 818, 700	75, 162, 784
Number of death claims	12, 146	12, 641
Death claims per 1,000 policies in force, annual rate.	8.5	8. 8

Deaths ${ }^{1}$ from all causes in certain largë cities of the United States during the week ended December 27, 1930, infant mortality, annual death rate, and comparison with corresponding week of 1929. (From the Weekly Health Index, issued by the Bureau of the Census, Department of Commerce)
[The rates published in this summary are based upon mid-year population estimates derived from the 1930 census]

City	Week ended Dec. 27, 1930				$\begin{gathered} \text { Corresponding } \\ \text { week } 1929 \end{gathered}$		Death rate ${ }^{2}$ for the 52 weeks	
	Total deaths	Death rate ${ }^{2}$	Deaths under 1 year	Infant mor- tality rate ${ }^{8}$	Death rate ${ }^{2}$	Deaths under 1 year	1930	1929
Total (78 cities)	7,997	12.1	699	${ }^{4} 56$	12.8	756	11.9	12.7
Akron.	32	6.6	4	37	9.5	7	7.8	9.3
Albany ${ }^{\text {b }}$	46	18.8			17.3	1	14.8	16. 4
Atlants	86	16.7	9	92	17.9	14	15.6	16.0
Colored	43	(9)	3	86	(6)	3	(6)	(0)
Baltimore ${ }^{3}$	214	13.9	22	77	13.5	18	14.0	14.7
Whito	165		12	53		7		
Colored	49	${ }^{(0)}$	10	160	${ }^{(6)}$	11	${ }^{(0)}$	${ }^{(6)}$
Birmingham.	70	14.1	14	135	15.1	7	13.6	15.8
Colored	33	(6)	4	+9888	(6)	5	(6)	(6)
Boston...	209	13.9	20	58	15.1	24	14.0	14.9
Bridgeport.	22	7.8	1	17	9.6	4	10.8	11.9
Buffalo...-	143	13.0	16	71	14.1	13	12.9	14.0
Cambridge	31	14.2	2	40	9.7		11.9	12.4
Camden..	19	8.5	5	88	16.5.	2	13.4	14.5
Canton.	16	7.9	0	0	14.5	3	9.7	11.1
Chicago ${ }^{5}$	656	10.1	45	40	12.2	76	10.4	11.3
Cincinnati.	123	14.2	7	41	14.2	7	15.6	17.0
Cloveland.	189	10.9	14	42	11.7	17	11.0	12.3
Columbus.	87	15.6	11	108	13.5	2	15.4	14.8
Dallas.	64	12.7	9		14.0	8	11.5	11.7
White	49 15	(0)	7		(6)	7 1	(0)	(6)
Dayton.	42	10.9	3	45	11.1	3	10.8	11.5
Denver	92	16.6	7	76	16.8	4	15.0	14.8
Des Moines.	32	11.7	5	92	10.3	0	11.6	11.5
Detroit.....	298	9.8	38	58	9.6	34	9.2	11.0

See footnotes at end of table.

Deaths from all causes in certait iarge cities of the United States during the woek ended December. 27, 1930, infant mortality, annual death rate, and comparison with corresponding week of 1929. (From the Weekly Health Index, issued by the Bureau of the Census, Department of Commerce)-Continued
[The rates published in this summary are based upon mid-year population estimates darived from the 1930 census]

City	Week ended Dec. 27, 1930				Correspondingweek 1929		Death rate for the 52 weeks	
	Total deaths	Death rate	Deaths under 1 year	Infant mortality	Death rate	Deaths under 1 year	1930	1929
Duluth	26	13.4	1	27	12.4	1	11.6	11.5
El Paso	38	19.3	4		21.8	3	17.1	19.3
Erie	23	10.3	2	44	15.0	4	11.0	12.0
Fall River ${ }^{57}$	18	8.2	3	69	10.9	1	11.6	13.5
Flint	19	6.3	2	24	8. 9	5	8.9	10.5
Fort Worth	36	11.6	7		13.8	5	11.2	12.2
White Colored	33 3		6 1		(6)	2		
Grand Rapids	30	9.3	2	30	13.5	7	10.1	${ }_{10} 12$
Houston.....	70	12.5	4		15.0	8	12.2	12.7
White.	48		3			6		
Colored	22	(6)			(9)	2	(9)	(9)--
Indianapolis	117	16.7	7	53	20.0	9	14.4	14.9
Colored	21	(6)	1	52 58	(0)	8 1	(0)	(6)
Jersey City	79	13.0	12	104	11.8	5	11.4	12.4
Kansas City, Kans	28	11.9	1	23	21.0	8	11.8	12.8
White-	23		1	28		4		
Colored.	5	${ }^{(6)}$	0	0	(9)	4	${ }^{6}$	(9)
Kansas City, Mo	89	11.8	8	67	15.1	12	13.4	14.0
Knoxville-	31	15.2	4	94	16.6	6	13.4	13.8
White	24		3	78		4		
Colored.	7	(9)	1	243	(9)	2	(9)	(9)
Los Angeles	384	-16. 1	24	73	12.6	15	11.2	11.4
Louisvilie.	85	14.4	12	103	11.7	4	13.5	15.2
White	65		10	98		3		
Colared	20	(8)	2	133	${ }^{(6)}$	1	${ }^{6}$	(0)
Lowell ${ }^{7}$.	28	14.6	4	106	11.8	0	13.2	14.1
Lynn.	26	13.2	2	56	9.7	4	10.5	11.3
Memphis	72	14.8	11	129	17.9	11	16.9	18.8
White-	43		7	126		5		
Milwaukee	105	9.6	12	135 53	$\stackrel{1}{10.8}$	19	${ }_{9} 9.8$	${ }^{(6) .9}$
Minnespolis.	107	12.0	11	72	12.9	8	10.8	10.8
Nashville.-	44	15.6	6	94	10.0	1	17.2	18.5
White	29		4	84		0		
Colored.	15	(6)	2	124		1	9	(0)
New Bedford ${ }^{\text {? }}$	23	10.6	2	51	12.9	2	11.0	11.9
New Haven.	51	16.3	2	31	122	4	12.6	13.4
New Orleans	187	21.3	20	111	23.6	21	17.5	17.9
White-	118		11	93		10		
${ }^{\text {Colored }}$	69	${ }^{(6)} 7$	9	146	${ }^{(8)}$	11	(0) 7	(6)
New York	1,432	10.7	119	50	11.8	150	10.7	11.3
Bronx Borough..-	210	8.6	11	32	10.0	20	7.8	8.3
Brooklyn Borough Manhattan Boroug	403	8.1	42	44	10.5	63	9.6	10.2
Manhattan Boroug	604	17.0	50	64	16.3	41	16.0	16.3
Queens Borough.-	179	8.5	15	60	8.1	20	7.1	7.7
Newark, N. J .---.	36	11.9	1	19	14.2	6	13.8	15.9
Newark, N. J	104	12.2	10	52	10.9	6	11.9	12.7
Oakland.---.---	72	13.1	2	25	9.9	4	11.0	11.3
Oklahoma City	32	9.0	1	18	12.1	7	11.0	11.0
Omaha-	54	13.1	6	73	11.8	0	13. 5	13.5
Paterson-.--	29	10.9	4	70	10.6	2	12.1	13.4
Philadelphia	415	11.0	29	43	11.9	46	12.5	13.1
Pittsburgh.-..	199	15.5	17	60	13.1	22	13.8	14.8
Prortland, Oreg	57	9.9	2	25	15.5	2	12.1	12.7
Providence	75	15.6	5	46	14.6	2	13.0	14.5
Richmond	56	15.9	6	87	18.0	9	14.9	16.3
Colored	21		2	85	(6)	6		
Rochester.	73	11.7	6	53	10.5	3	11.6	12.3
St. Louis	212	13.4	11	38	14.0	15	14.0	14.6
St. Paul	53	10.2	1	10	15.7	1	10.1	10.7
Salt Lake City ${ }^{\text {- }}$	40	14.8	2	32	13.2	8	12.6	12.9
San Antonio.	73	14.8	14		16.2	6	14.3	14.8
San Diego-...-	130	14.0 11.1	5	84 34	13.5 9.4	4	14.5 13.2	15.1 13.0

See footnotes at end of table.

Doethe from all causes in certain large cities of the United States during the week ended December 87, 1950, infant mortality, annual death rate, and comparison with corresponding week of 1929. (From the Weekly Health Index, issued by the Bureau of the Census, Department of Commerce)-Continued
[The rates published in this summary are based upon mid-year population estimates derived from the 1930 census]

City	Week ended Dec. 27, 1930				Correspondingweek 1929		Death rate for the 52 weeks	
	Total deaths	$\begin{gathered} \text { Death } \\ \text { rate } \end{gathered}$	Deaths under 1 year	Infant mortality rate	Death rate	Deaths under 1 year	1930	1929
Schenectady	19	10.3	3	93	10.9	4	11.0	12.1
Seattle...	73	10.4	1	10	14.4	6	11.0	11.2
Somerville	20	10.0	3	95	8.6	1	9.7	9.3
Spokane	24	10.8	1	26	15.4	2	12.4	13.0
Springfield, Mass	36	12.5	5	86	13.7	2	12.1	12.7
Syracuse...-	${ }_{23}^{54}$	13.6 11.2	0	37 0	13.0 11.3	3	11.7 12.4	12.9 11.7
Toledo.	59	10.5	7	64	16.3	3	12.6	13.7
Trenton..	25	10.6	5	96	19.2	4	16.5	17.1
Utics....	29	14.7	3	83	16.3	0	14.5	15. 5
Washington, D. C.	137	14.7	8	47	15.1	9	15.2	15.4
White-..-.--	88		3	28		4		
Colored.	49	${ }^{(6)}$	5	89	(6)	5	$\left.{ }^{(}\right)$	${ }^{(6)}$
Watarbury	11	5.7	1	24	5.7	0	9.2	9. 2
Wilmington, Del. 7	37	18.4		48	9.9	1	14.7	13.7
Worcester.....-.	57	15. 1	1	14	11.5	1	12.7	12.6
Yonkers.-	22	8.4	1	24	16.1	5	8.1	9. 5
Youngstown....	34	10.4	8	115	10.2	9	10.4	12.4

[^11]
PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

CURRENT WEEKLY STATE REPORTS

These reports are preliminary, and the figures are subject to change when later returns are received by the State health officers

Reports for Weeks Ended January 3, 1931, and January 4, 1930

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended January S, 1931, and January 4, 1950

${ }^{1}$ New York City only.
${ }^{2}$ Figures for 1930 are for 2 weeks.
3 Week ended Friday.

Caces of cortain communicable diseases reported by telegraph by State health officers for weeks ended January s, 1951, and January 4, 1930-Continued

Division and 8tato	Diphtheria		Influenza		Measles		Meningococcusmeningitis	
			Weok ended - 1931					
Kentucky	8	12			18	92	4	
Tennessee...........	16	13	85	205	81	41	3	
Alabama	30	32	60	173	233	7	1	
Mississippi_....-.-.-...-	23	29					1	
West South Central States:								
Loulsiana.....	50	22	48	34	1	30	1	
Oklahoma	29	54	69	160	21	44	1	
	49	48	14	45	101	8	1	0
								3
						5		2
New Mexico.	4	- 17			40	5	0	
Poliomselitis Scarlet fever $^{\text {P }}$ Smallpox ${ }^{\text {P }}$ (yphoid fever								
Division and State		Week						
				ended	ended	ended		
	$\begin{gathered} \text { Jan. 3, } \\ 1931 \end{gathered}$	$\begin{gathered} \text { Jan. 4, } \\ \text { 1930 } \end{gathered}$	$\begin{gathered} \mathrm{Jan} .3, \\ 1031 \end{gathered}$	$\begin{gathered} \text { Jan. 4, } \\ 1930 \end{gathered}$	$\begin{aligned} & \text { Jan. } 3 \text {, } 19 \dot{1}, \end{aligned}$	$\begin{aligned} & \text { Jan. 4, } \\ & 1930 \end{aligned}$	$\begin{aligned} & \text { Jan. 3, } \\ & 1931 \end{aligned}$	$\begin{gathered} \text { Jan. 4, } \\ 1930 \end{gathered}$
New York --.-.--	4	2	494	385	1	0	7 7	4
New Jersey	0 3	1	210 601	203 773	0	0 3	7 13	29
Pennsylvania ${ }^{2}$ East North Central	3	3	601	773	0	3	13	East North Central States:
Ohio...-.-.-....-.......	5	2	576	312	58	215	19	9
Indiana.--	0	0	213	154	98	204	1	2
Illinois..	6	2	345	515	34	135	21	0
Michigan.	3	0	358	280	52	64	8	0
Wisconsin.	2	0	102	72	3	6	5	6
West North Central States:								0
Iowa	1	0	62	98	23	90	1	0
Missouri.	2	0	119	111	6	21	1	6
North Dakota	0	1	21	37	7	15	3	0
South Dakota	0	0	16	23	16	18	1	3
Nebraska.	2	0	37	58	76	35	0	1
Kansas...	1	0	41	132	52	29	3	3
Delaware ${ }^{\text {Maryland }}$------	0	0	31 86	$\begin{array}{r}84 \\ \hline 8\end{array}$	0	0	7	2
West Virginia.	0	0	39	31	8	7	2 3	8
North Carolina	0	0	75	65	1	11	5	8
South Carolina.	1	2	11	21 40	0	3 0	5 2	5
Feorgia	0	1	27 16	40 28	0	0	3	3

[^12]
Cases of certain communicable diseases reported by telegraph by Stata health offeers

 for weeks ended January 3, 1951, and January 4, 19s0-Continued| Division and State | Poliony ${ }^{\text {alitis }}$ | | Scarlet fever | | Smallpox | | Typhoid fever | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Week ended Jan. 4, 1930 | | Week ended Jan. 4, | Weak ended Jan. 3, 1031 | $\begin{aligned} & \text { Week } \\ & \text { ended } \\ & \text { Jan. 4, } \\ & 1930 \end{aligned}$ | Weak anded Jan. 3 , 1931 | Week ended Jan. 4, 1930 |
| West South Central States:
 Arkansas. | | | | | | | | |
| | 2 | 0 | 17 | 14 | 6 | 14 | 6 | 7 |
| Oklahoma ${ }^{4}$ | 1 | 0 | 51 | 56 | 56 | 90 | 11 | 10 |
| Texas....... | 0 | 0 | 35 | 32 | 11 | 31 | 10 | 4 |
| Mountain States: | | | | | | | | |
| Montana. | 0 | 0 | 39 | 40 | 18 | 11 | 0 | 1 |
| Idaho--.- | 0 | 0 | 5 | 14 | 2 | 8 | 2 | 1 |
| W yoming | 0 | 0 | 12 | 5 | 2 | 12 | 2 | 0 |
| Colorado-- | 0 | 0 | 35 | 35 | 4 | 15 | 0 | 1 |
| New Mexico. | 0 | 1 | 5 4 | $\begin{array}{r}5 \\ \hline 14\end{array}$ | 1 | 2 | 1 | |
| Arizona | 0 | 0 | 4 | 14 | 0 | 10 | 1 | 1 |
| Pacific States: | 2 | 0 | 3 | 10 | 0 | 2 | 2 | 1 |
| Washington. | 0 | 1 | | 60 | 22 | | | |
| Oregon...... | 1 | 0 | 8 | 20 | 13 | 24 | 1 | 1 |
| California | 16 | 2 | 86 | 258 | 67 | 63 | 8 | 4 |

${ }^{8}$ Week ending Friday.
4 Figures for 1931 are exclusive of Oklahoma City and Tulsa.

SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of cases reported monthly by States is published weekly and covers only those States from which reports are received during the current week.

September, 1950
Mississippi: Cases
Chicken pox 218
Dengue 6
Dysentery (amebic) 49
Dysentery (bacillary) 780
Hookworm disease 269
Mumps 90
Ophthalmis neonatorum 16
Puarperal septicemia 32
Rabies in animals 6
Trachoma
283
Whooping eough
Nocember, 1930
Chicken pox:
Arkansas 57
Georgia 116
Nevada 5
Dengue:
Georgia 1
Dysentery:
Georgia 19
Hookworm disease: Cases
Arkansas 1
Georgia 92
Mumps:
Arkansas 22
Georgia. 46
Nevada 14
Septic sore throat:
Georgia 38
Tetanus: Georgia 2
Trichinosis: Georgia 3
Tularæmia: Nevada 1
Typhus fever: Georgia 13
Undulant fever: Georgia 2
Whooping cough:
Arkensas 6
Georgia 55
Nevada 33

Cases of Certain Communicable Diseases Reported for the Month of September, 1930, by State Health Officers

State	Chicken pox	Diphtheria	Measles	Mumps	Scarlet fever	$\underset{\text { pox }}{\text { Small }}$	Tuberculosis	Typhoid and paratyphoid fever	Whoop ing cough
Maine.	12	7	105	66	28	0	46	24	146
New Hampshire		11			8	0		6	
Vermont.------	54	2	6	8	6	0	12	4	35
Massachusetts	117	166	142	90	244	0	406	48	517
Rhode Island.	5	19	4	1	27	0	34	11.	48
Connecticut..	23	25	12	25	54	0	128	17	120
New York	242	241	241	254	306	10	1,774	249	1,367
New Jersey-	91	206	73	32	150	0	433	67	297
Pennsylvania.	245	379	245	174	474	0	601	396	776
Ohio-	174	163	65	60	482	93	599	305	355
Indiana	34	58	9	4	128	73	217	54	56
Illinois.-	144	387	56	164	400	64	673	196	521
Michigan.	118	164	82	48	344	22	375	117	518
Wisconsin.	134	28	104	118	153	20	129	32	548
Minnesota	70	56	6		119	11	226	22	83
Iowa.---	23	17	10	18	94	36	22	19	40
Missouri.	26	105	40	27	107	19	219	132	74
North Dakota.	7	12	7	64	24	3	12	26	41
South Dakota	13	42	12	1	24	36	6	11	19
Nebraska...	32	14	18	12	47	45	18	17	55
Kansas.-	30	45	20	27	131	10	119	49	107
Delaware	2	5	3	3	16	0	39	25	1
Maryland.	31	45	12	17	60	0	${ }^{1} 226$	211	113
District of Colum	2	44	23		13	0	67	15	8
Virginia.-----	74	156	92		186	9	109	213	204
West Virginia	10	81	45		108	15	38	240	65
North Carolins.	39	456	18		321	2		166	325
South Carolins.	26	267	7	28	57	0	94	169	114
Georgia	21	81	47 3	11	73 11	18 0	79 53	168 13	41
Florida-	8	24							
Kentucky ${ }^{2}$									
Tennessee...		107					142		50 75
Alabama-	218	107 87	30 61	15 90	116 44	5 5	371 231	117	75 383
Louisiana.	4	108	12	1	57	4	${ }^{1} 153$	134	20
Oklahoms		94	10	2	64	25	27	171	14
Texas...-		76			38			58	
Montana.	28	6	5	15	57	0	56	39	79
Idaho..-	1	16	12	7	22	6	7	7	52
W yoming.	2	4	1	1	15	0		3 5 5	112
Colorado.	15	35	80	62	33	5	96	58	132
New Mexico	1	16	9	12	19	1	59	${ }^{62}$	${ }_{33}^{16}$
Arizona...		25	11	4	23	1	122	27	33
Utah ${ }^{2}$	4						12	1	1
Washington.	84	35	34	67	118	59	139	26	162
Oregon-....-	28	9	85	84	38	5	51	26	${ }^{63}$
California.	264	130	192	367	176	42	835	73	408

${ }^{1}$ Pulmonary.
${ }^{2}$ Reports received weekly.
a Exclusive of Oklahoma City and Tulsa.

Case Rates per 1,000 Popelation (Amnual Basis) for the Month of Sepromber, 1930, Based on Provisional Populations

State	$\underset{\text { pox }}{\text { Chicken }}$	Diphtheria	Measles	Mumps	Scarlet fever	$\underset{\text { pox }}{\text { Small- }}$	Tuberculosis	Ty- phoid and paratyphoid fever	Whooping cough
Maine	0.18	0.11	1.60	1.00	0.43	0.00	0.70	0.36	22
New Hampshire		. 29			. 21	. 00		. 16	
Vermont.	1.83	. 07	. 20	. 27	. 20	. 00	. 41	. 14	1.19
Massachusetts	. 33	. 47	. 41	. 25	. 70	. 00	1.16	. 14	1.48
Rhode Island.	. 09	. 34	. 07	. 02	. 48	. 00	. 60	. 19	. 85
Connecticut.-	. 17	. 19	. 09	. 19	. 41	. 00	. 97	. 18	. 91
New York	. 23	. 23	. 23	. 24	. 29	. 01	1.70	. 24	1.81
New Jersey	. 27	. 62	. 22	. 10	. 45	. 00	1.30	. 20	. 89
Pennsylvania	. 31	. 48	. 31	. 22	. 60	. 00	. 76	. 50	. 88
Ohio.	. 32	. 30	. 12	. 11	. 88	. 17	1.09	. 56	. 65
Indiana	. 13	. 22	. 03	. 02	. 48	. 27	. 82	. 20	. 21
Llinois	. 23	. 62	. 09	. 28	. 64	. 10	1.07	. 31	. 83.
Michigan	. 29	. 41	. 20	. 12	. 86	. 05	. 94	. 29	1.29
Wisconsin	. 56	. 12	. 43	. 49	. 63	. 08	. 53	. 13	227
Minnesota	. 33	. 27	. 03		. 56	. 05	1.07	. 10	. 39
Iowa.	. 11	. 08	. 05	. 09	. 46	. 18	. 11	. 09	. 20
Missouri	. 09	. 35	. 13	. 09	. 36	. 06	. 73	. 44	25
North Dakota	. 12	. 21	. 12	1.14	. 43	. 05	. 21	. 48	. 73
South Dakota	. 23	. 74	. 21	. 02	. 42	. 63	. 11	. 19	. 33
Nebraska.	. 28	. 12	. 16	. 11	. 41	. 40	. 16	. 15	. 48
Kansas.	. 19	. 29	.13	. 17	. 85	. 06	. 77	. 32	. 69
Delaware	. 10	. 25	. 15	. 15	. 82	. 00	1.99	1.27	. 05
Maryland	. 23	. 34	. 09	. 13	. 45	. 00	11.68	1.57	. 84
District of Columb	. 05	1.10	. 57		. 32	. 00	1.67	. 37	. 20
Virginia	. 37	. 78	. 46		. 93	. 05	. 55	1.07	1.02
West Virginia	. 07	. 57	. 32		. 76	. 11	. 27	1.68	. 46
North Carolina	. 15	1.74	. 07		1. 23	. 01		. 63	1.24
South Carolina	. 18	1.87	. 05	. 20	. 40	. 00	. 66	1. 19	. 80
Georgia	. 09	. 34	. 20	. 05	. 31	. 08	. 33	. 70	. 17
Florida	. 07	. 20	. 02		. 09	. 00	. 44	. 11	. 26
Kentucky ${ }^{2}$									
Tennessee	. 13	. 42	. 14	. 02	. 59	. 03	. 66	1.25	23
Alabama.	. 08	. 49	. 14	. 07	. 53	. 02	1. 73	. 54	. 34
Mississippi	1.32	. 53	. 37	. 54	. 27	. 03	1.40	. 77	1.71
Arkansas.	. 10	. 14	. 01	. 15	. 28	. 03	${ }^{1} 14$. 88	. 20
Louisiana-	. 02	. 63	. 07	. 01	. 33	. 02	${ }^{1} .89$. 78	. 12
Oklahoma ${ }^{\text {a }}$. 55	. 06	. 01	. 38	. 15	. 16	1.01	. 08
Montana	. 64	. 14	. 11	. 34	1.29	. 00	1.27	88	
Idaho-	. 03	. 44	. 33	. 19	. 60	. 16	. 19	.89	1.42
W yoming	. 11	. 22	. 05	. 05	. 81	. 00		.16	. 59
Colorado.	. 18	. 41	. 94	. 73	. 39	. 06	1.13	. 68	1.55
New Mexico.	. 03	. 45	. 26	. 34	. 54	. 03	1.67	1.76	45
Arizona		. 69	. 31	. 11	. 64	. 03	3.39	. 75	. 92
Utan ${ }^{2}$									
Nevada	. 53					. 00	1. 27	13	. 13
Washington-	. 65	. 27	. 28		. 92	. 46	1.08	20	
Oregon..-	. 36	. 11	1.08	1.07	. 48	.06	. 65	. 33	1.20
California.	. 56	. 28	. 41	. 78	. 37	.09	1.77	.16	. 87

[^13]
RECIPROCAL NOTIFICATIONS

Nodificutions regarding commumicable diseases sent during the month of November, 19S0, by departments of health of certain States to other State health departments

GENERAL CURRENT SUMMARY AND WEEKLY REPORTS FROM CITIES

The 97 cities reporting cases used in the following table are situated in all parts of the country and have an estimated aggregate population of more than $32,020,-$ 000. The estimated population of the 90 cities reporting deaths is more than $\mathbf{3 0 , 4 3 0}, 000$. The estimated expectancy is based on the experience of the last nine years, excluding epidemics.

Weeks ended December 27, 1930, and December 28, 1929

City reports for week ended December 87, 1950

The "estimated expectancy" given for diphtheria, poliomyelitis, scariot fover, smallpor, and typhofd ever is the result of an attempt to ascertain from previous occurrence the number of cases of the disease under consideration that may be expected to occur during a certain week in the absence of epidemics. It is based on reports to the Public Health Service during the past nine years. It is in most instances the median number of cases reported in the corresponding weeks of the preceding years. When the reports include several epidemics, or when for other reasons the median is unsatisfactory, the epidemic periods are excluded, and the estimated expectancy is the mean number of cases reported for the weak during nonepidemic years.
If the reports have not been received for the full nine years, data are used for as many years as possible, but no year earlier than 1921 is included. In obtaining the estimated expectancy, the figures are smoothed when necassary to avoid abrupt deviation from the usual trend. For some of the diseases given in the table the available data were not sufficient to make it practicable to compute the estimated expectancy.

City reports for week ended December 27, 1950-Continued

City reports for week ended December 87, 1950-Continued

City reports for-week ended December 27, 1930—Continued

City reports for week ended December 27, 1950-Continued

City reports for week ended December 27, 1930-Continued

Division, State, and city	Scarlet fever		Smallpox			$\begin{gathered} \text { Tuber- } \\ \text { culo- } \\ \text { sis, } \\ \text { deaths } \\ \text { re- } \\ \text { ported } \end{gathered}$	Typhoid fever			Whoopcough, cases roported	Deaths all causes
	Cases, esti- mated expect- ancy	$\begin{aligned} & \text { Cases } \\ & \text { re- } \\ & \text { ported } \end{aligned}$	Cases, estimated expect ancy	Cases reported	$\begin{gathered} \text { Deaths } \\ \text { re- } \\ \text { preded } \end{gathered}$		Cases. estimated expectancy	Cases reported	Deaths reported		
WEST SOUTH CEN- tral											
Arkansas: Fort Smith Little Rock	0 2	$\begin{aligned} & \mathbf{0} \\ & \mathbf{3} \end{aligned}$	0 0	0	0	0	0 0	0	0	0	
Louisiana: New Orleans. Shreveport	7 2	5 2	0	1 0	0	14	3 0	0	0	0	187 32
Oklahoma: Tulsa	2	6	1	5			0	0		0	
Texas:			\div								
Dallas.-------	6	5	0	1	0	2	0	0	0	1	64
Fort Worth...-	1	6	1	0	0	2	0	0	0	0	36
Galveston....-	0 3	0 2	0 1	0 2	0	0 3 3	0 0	0	1 0	0	15 70
San Antonio.--	2	0	0	1	0	7	0	0	0	0	73
mountain											
Montana:											
Billings......--	1	0	0	4	0	1	0	0	0	3	10
Great Falls...-	3	8	0	0	0	0	0	0	0	3	5
Helena ${ }^{\text {Missoula }}$ -	0	0	0	0	0	0	0	0	0	0	4
Missoula	1	0	0	0	0	0	0	0	0	16	3
Idaho: Boise	2	0	0	0	0	1	0	0	0	0	8
Colorado:											
Denver.......--	12	28	0	0	0	5	0	1	0	16	82
Pueblo-...----	1	0		0	0	0	0	0	0	3	9
New Mexico: Albuquerque.-	0	0	0	0	0	2	0	0	0	0	11
Arizona:											
Phoenix.-.-.--	0	0	0	0	0	2	0	0	0	0	11
Ctah: Salt Lake City-	1		1				0				
Nevada: Reno	0	0	0	0	0	0	0	0	0	0	4
PaCIFIC											
Washington:											
Seattle........-	8	9	1	0			1	1		15	
Spokane.-...--	7	4	4	2			0	0		0	
Tacoma......-	3		4	4	0	1	0	0	0	0	23
Oregon: Portland	7		8	2	0	0	0	0	0	11	57
Salem........-.	0	0	0	0	0	0	0	0	0	0	
California:											
Los Angeles..-	31	15	1	4	0	18	1	2	0	2	384
Sacramento...-	2	1	1	0	0	3	0	0	0	2	31
San Francisco.	17	7	1	0	0	8	0	0	0	6	154

City reparts for week ended December 27, 1950—Continued

${ }^{1}$ Typhus fever: 4 cases; 1 case at Baltimere, Md.; 1 case at Washington, D. C.; and 2 cases at Savannah, Ga.

City reports for week ended December 27, 1930-Continued

The following tables give the rates per $\mathbf{1 0 0 , 0 0 0}$ population for 98 cities for the 5-week period ended December 27, 1930, compared with those for a like period ended December 28, 1929. The population figures used in computing the rates are approximate estimates, authoritative figures for many of the cities not being available. The 98 cities reporting cases have an estimated aggregate population of more than $32,000,000$. The 91 cities reporting deaths have more than $30,500,000$ estimated population.

$$
28444^{\circ}-31-3
$$

Summary of weekly reports from cities Nowember 25 to December 27, 1950-Annual rates per 100,000 population, compared with rates for the corresponding period of 1989 ${ }^{1}$

DIPHTHERLA CASE RATES

	Week ended-									
	Nov. 1930	Nov. 30, 1929	$\begin{gathered} \text { Dec. } \\ \text { 6, } \\ 1930 \end{gathered}$	$\begin{gathered} \text { Dec. } \\ 7 \\ 1929 \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 13, \\ & 1930 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 14, \\ & 1929 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 20, \\ & 1930 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 21, \\ & 1929 \end{aligned}$	$\begin{gathered} \text { Dec. } \\ 27, \\ 1930 \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 28, \\ & 1929 \end{aligned}$
98 cities.	89	139	292	146	390	134	496	128	${ }^{5} 73$	120
New England.	80	177	111	112	117	117	${ }^{6} 130$	168	60	128
Middle Atlantic.	50	123	61	110	50	112	65	106	49	113
East North Central	123	167	113	191	${ }^{7} 122$	170	${ }^{8} 120$	167	103	167
West North Central	108	114	99	121	95	148	87	110	53	67
South Atlantic.-.--	60	144	${ }^{9} 104$	127	${ }^{\circ} 113$	107	- 91	107	79	79
East South Central.	155	157	162	226	155	137	94	123	94	109
West South Central	164	259	${ }^{10} 159$	362	${ }^{11} 147$	293	10219	225	153	171
Mountain.-	77	17	120	157	26	61	17	61	${ }^{167}$	35
Pacific.............	111	56	76	84	64	58	97	56	47	82

MEASLES CASE RATES

98 cities	109	74	2146	98	${ }^{3} 167$	113	4194	109	3185	91
New England	148	70	202	81	250	85	6173	92	279	90
Middle Atlantic	73	33	89	54	89	47	91	59	74	51
East North Central	28	101	28	93	727	133	${ }^{8} 29$	94	28	97
West North Central	636	100	933	216	1,055	202	1,387	210	1,250	146
South Atlantic.	40	22	957	4	- 74	28	9128	39	114	30
East South Central	74	0	175	14	337	14	310	0	364	0
West South Central	11	38	1012	46	${ }_{11} 8$	61	1020	133	26	88
Mountain	275	131	1251	165	146	104	163	139	${ }^{3} 258$	78
Pacific.	12	249	31	377	31	464	7	418	19	326

SCARLET FEVER CASE RATES

98 cities	178	212	${ }^{2} 207$	252	3229	277	4236	249	- 227	216
New England	241	258	246	276	237	375	6312	310	323	299
Middle Atlantic	156	116	187	148	196	172	219	176	200	165
East North Central	224	361	259	409	7318	438	8300	355	288	311
West North Central	137	183	194	231	205	271	273	235	241	179
South Atlantic.	172	139	- 211	159	- 241	193	- 193	253	163	144
East South Central	243	137	337	144	425	89	223	48	385	75
West South Central	142	118	10100	156	11 94	137	1080	99	64	122
Mountain.....-	223	348	12120	392	206	322	292	583	3404	322
Pacific.	97	266	113	355	83	340	97	244	99	246

SMALLPOX CASE RATES

98 cities	8	14	27	19	${ }^{3} 15$	23	49	23	87	18
New England	0	0	0	0	0	2	6	0	0	0
Middle Atlantic	0	0	0	0	0	0	0	0	0	0
East North Central	4	13	1	26	73	29	${ }^{8} 6$	31	3	20
West North Central	66	48	47	64	120	56	47	60	42	58
South Atlantic.	0	0	\bigcirc	0	0	0	0	0	0	2
East South Central.	0	0	0	0	0	0	0	7	0	7
West South Central	4	11	104	19	118	34	1016	34	- 19	27
Mountain.	34	35	12205	78	146	78	112	52	545	44
Pacific.	9	75	12	60	7	118	12	113	24	77

[^14]Summary of weekly reports from cities November 23 to December 27, 1930-Annual rates per 100,000 population, compared with rates for the corresponding period of 1989-Continued

TYPHOID FEVER CASE RATES

	Week ended-									
	Nov. 29, 1930 1830	Nov. 30, 1929	$\begin{gathered} \text { Dec. } \\ 6 \text { 6, } \\ 1930 \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 7.1 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 13, \\ & 1930 \end{aligned}$	Dec. 14, 1929	$\begin{aligned} & \text { Dec. } \\ & 20, \\ & 1930 \end{aligned}$	$\begin{gathered} \text { Dec. } \\ 21, \\ 1929 \end{gathered}$	Dec. 27, 1930	Dec. 28, 1929
98 cities.	10	5	${ }^{2} 10$	5	88	6	49	5	67	4
New England.	11	2	7	2	18	7	${ }^{6} 10$	0	2	2
Middle Atlantic.-	3	2	8	4	7	6	3	4	3	3
East North Central	4	5	10	4	77	3	${ }^{8} 10$	3	13	1
West North Central	8	6	6	2	6	6	${ }^{8}$	8	${ }^{6}$	9
South Atlantic.....	29	4	${ }^{9} 17$	${ }^{6}$	${ }^{2} 4$	7	${ }^{-11}$	4	15	9
East South Central	13	34	13	48	-20	14	40	0	20	34
West South Central	75	15	1028	0	${ }^{11} 25$	8	1028	38	0	8
Mountain...........	9	20	${ }^{12} 17$	26	0	9	9	17	${ }^{5} 11$	0
Pacific.-............	7	2	12	10	7	7	7	2	7	10

INFLUENZA DEATH RATES

PNEUMONIA DEATH RATES

91 cities	112	106	${ }^{2} 102$	136	13108	150	4115	158	${ }^{5} 130$	143
New England	71	92	66	74	109	135	${ }^{6} 108$	157	109	94
Middle Atlantic.	125	101	107	139	109	156	133	165	132	155
East North Central	78	84	78	126	785	116	870	117	95	116
West North Central	92	126	130	126	145	174	95	180	115	174
South Atlantic.	165	129	- 143	131	- 121	191	${ }^{9} 128$	184	159	152
East South Central	155	224	177	239	140	216	125	216	184	194
West South Central	165	156	10139	238	10176	230	10147	234	203	234
Mountain.	223	157	${ }^{12} 137$	165	154	192	215	235	6235	209
Pacific.	88	104	74	138	74	107	156	138	166	104

${ }^{2}$ Raleigh, N. C., Shreveport, La., and Denver, Colo., not included.
${ }_{3}$ South Bend, Ind., Raleigh, N. C., Fort Smith, Ark., and Shreveport, La., not included.
${ }^{4}$ Hartford, Conn., Grand Rapids, Mich., Raleigh, N. C., and Shreveport, La., not included.
${ }^{5}$ Salt Lake City, Utah, not included.

- Hartford, Conn., not included.
${ }^{7}$ South Bend, Ind., not included.
${ }^{8}$ Grand Rapids, Mich., not included.
- Raleigh, N. C., not included.
${ }^{10}$ Shreveport, La., not included.
${ }^{11}$ Fort Smith, Ark., and Shreveport, La., not included.
12 Denver, Colo., not included.
is South Bend, Ind., Raleigh, N. C., and Shreveport, La., not included.

FOREIGN AND INSULAR

CANADA

Abstract

Provinces-Communicable diseases-Week ended December 27, 1980.-The Department of Pensions and National Health reports cases of certain communicable diseases from eight Provinces of Canada for the week ended December 27, 1930, as follows:

Province	Influenza	Poliomy elitis	$\underset{\text { pox }}{\text { Small }}$	Typhoid lovar
Prince Edward Island ${ }^{1}$				
Nova Scotia				1
New Brunswick.				
Quebec.-	43			7
Ontario-..-----				20
Manitoba-.----				
Saskatchewan		1		
Total	43	1	5	37

${ }^{1}$ No case of any disease included in the table was reported during the week.
Quebec Province-Communicable diseases-Week ended December 27, 1930.-The Bureau of Health of the Province of Quebec, Canada, reports cases of certain communicable diseases for the week ended December 27, 1930, as follows:

Disease	Cases	Disease	Cases
Chicken pox	54	Ophthalmia neonatorum.	1
Diphtheria..	31	Puerperal septicamia.....	2
Erysipelas.-....	9	Scarlet fever--.--.--	79
German measles.	1	Tuberculosis.-	31
Influenza	43	Typhoid fever-	7
Measles	4	Whooping cough.-.--	29

DENMARK

Communicable diseases-October, 1930.-During the month of October, 1930, cases of certain communicable diseases were reported in Denmark, as follows:

Disease	Cases.	Diseases	Cases
Cerebrospinal meningitis	5	Paratyphoid fever.	12
Chicken pox-	14	Poliomyelitis....	13
Diphtheria and croup.	510	Puerperal fever	20
Erysipelas.-	363	Scabies	1,016
Influenza	4,175	Tetanus	223
Lethargic encephalitis.	7	Typhoid fever	6
Measles	1,082	Undulant fever (Bac. abort. Bang)	43
Mumps	248	Whooping cough	1,782

ITALY

Communicable diseases-Four weeks ended August 10, 1930.-During the four weeks ended August 10, 1930, cases of certain communicable diseases were reported in Italy as follows:

Disease	July 14-20, 1930		July 21-27, 1930		$\begin{gathered} \text { July } 28 \text {-Aug. } 3, \\ 1930 \end{gathered}$		Aug. 4-10, 1930	
	Cases	Communes affected	Cases	$\underset{\substack{\text { Com- } \\ \text { affected }}}{\substack{\text { Cunes }}}$	Cases	Communes affected	Cases	Communes affected
Anthrax.	29	28	41	35	31	29	25	23
Cerebrospinal meningitis	10	9	14	12	10	7	7	6
Chicken pox.	82	52	60	36	36	30	53	42
Diphtheria and croup.	281	182	280	177	314	198	337	223
Dysentery-..--.---	81	28	45	17	81	28	78	27
Lethargic encephalitis..			4	3	3	2	7	6
Measles.---.....-.......	1, 340	328	1,092	287	835	265	741	246
Poliom yelitis.	14	9	15	13	8	7	15	13
Scarlet fever.	273	123	242	109	261	126^{*}	250	104
Typhoid fever.	911	417	903	434	974	463	1,137	539

PANAMA CANAL ZONE
Communicable diseases-November, 1930.-During the month of November, 1930, certain communicable diseases, including imported cases, were reported in the Panama Canal Zone and terminal cities, as follows:

Disease	Cases	Deaths	Disease	Cases	Deaths
Chicken pox	6	-	Measles.	34	
Diphtheria--	8		Pneumonia.		22
Dysentery (amoebic)	10		Tubercilosis.		31
Malaria.	116	2	Whooping cough	5	

TRINIDAD (BRITISH WEST INDIES)

Port of Spain-Vital statistics-November, 1929 and 1930.-The following statistics for the month of November, 1929 and 1930, are taken from a report issued by the Public Health Department of Port of Spain, Trinidad:

	November			November	
	1929	1930		1929	1930
Number of births.	182	190	Deaths under 1 year	9	22
Birth rate per 1,000 population.-	33.4	34.3	Infant mortality rate per 1,000		
Number of deaths rate per 1,000 population.-	17.2	16.3	tirths.--------------------	49.5	115.8

YUGOSLAVIA

Communicable diseases-November, 1930.-During the month of November, 1930, certain communicable diseases were reported in Yugoslavia, as follows:

Disease	Cases	Deaths	Discase	Cases	Deaths
Anthrax	62	3	Puerperal septicemia.	7	3
Cerebrospinal mening	11	8	Rabies	1	1
Diphtheris and croup.	1,633	189	Scarlet fever	1,408	203
Dysentery-..	44	12	Tetanus --.-.	26	${ }^{14}$
Erysipelas	190	8	Typhoid fever	603	84
Leprosy-..--	1,185	15	Typhus fever	2	

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER
From medical officers of the Public Health Service, American consuls, International Office of Public Hygiene, Pan American Sanitary Bureau, health section of the League of
Nations, and other sources. The reports contained in the following tables must not be considered as complete or fnal as regards either the list of countries included or the flgures for the particular countries for which reports are given.
[C indicates cases; D, deaths; P, present]

Place	$\left\|\begin{array}{c} \text { July } \\ \text { 2uz- } \\ \text { Aug. } \\ 23,1930 \end{array}\right\|$	$\begin{gathered} \text { Aug. } \\ 24 . \\ \text { Sent. } \\ 20,1930 \end{gathered}$	$\begin{aligned} & \text { Sept. } \\ & \text { 2LI. } \\ & \text { Oct. } 19, \text {, } 1930 \end{aligned}$	Week ended-														
				Oct. November, 1930						December, 1930				Jan.				
				1930	1	8	15	22	29	6	13	20	27					
Afghanistan																		
('anton.		2	1	1	-													
\&hanghai..-		34		1	-....	1												
Shensi Province.		p^{3}	4					-	.									
Swatow-.......		2		---	-	-		..										
India.-....-				522							--							
	22,358	23, ${ }^{5159}$	17, 33	2,733	2,915	2,149		---		.								
Bassein. Bombay.						1			2									
	18	2	11	10			---	2	1		${ }_{3}$							
Calcutta	68 30	27 12	24 15 18	7 4 4	7 2	${ }_{1}^{11}$	8	4 4 4	6 4	1	10	-	-	----				
Madras.	30 1 1		15 2															
Rangoon.	1	2	2			--..-		-										
Tuticorin	1	1	1					-										
India (French):																		
	1	1	1			9	2	1	1	1	1							
					3	5												

138
CHOLERA, PLAGUE, SMALLPOX. TYPHUS FEVER, AND YELLOW FEVER-Continued

Place	$\begin{gathered} \text { June } \\ \text { July } \\ \text { July } 20, \\ 1930, \end{gathered}$	July Aug. 23, 1930 .	$\begin{gathered} \text { Aug. } \\ 24 . \\ \text { sept. } \\ 20,1030 \end{gathered}$	$\begin{array}{\|c} \text { Sep.t. } \\ 2 I-1 \\ \text { Oct. 18, } \\ 1930 \end{array}$	Week ended-										
					November, 1930						December, 1930				$\begin{array}{\|c} \text { Jan. } \\ 8, \\ 1931 \end{array}$
					1930	1	8	15	22	29	6	13	20	27	
	-.........		2												
	$\cdots \cdots$ 20 9 8 3 10 6 $\cdots \cdots \cdots$	3 2 2					1	--.-		-	1	-.			--..--
Bangkok.		1	--...-.-	${ }_{3}^{1}$	1 1 1			--	2	1		1	2	.	--...
Songkla............					1	1			2	1		1	2		
On vessel: s. B. Malwa from Shanghai\qquad I)\square 0$-\cdots-\ldots$			1												

${ }^{3}$ During the period from Aug. 24 to Sept. 20, 1930, 26 eases of cholera with 17 deaths were reported in Manitum, Surigao Province, P. I.
Plague

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER—Continued

${ }^{1}$ Reports incomplete.

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[C indicates cases; D, deaths; P, present]

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

Somalland, British: Boales											-	--							--	--....				
Spain....-..................				5										ii	21	23		23						
straits Settlements............		--.		11	8		${ }^{6}$			1	1	3	3	4		3	9		8 8	\cdots				
Sudan (Anglo-Egyptian)		---		12	42		128		25	1	56	3			2		3		47					
											5				1				5					
Switzerland: Berne Canton...---...-		.-...																						
Syria (see table below).																								
Tunisia: Tunis-1.....-....--		-		1					2															
Turkey (see table below). Union of South Africa:																								
Cape Province...				P			P				P	\mathbf{P}												
Orange Free State.				P									1	1	P	P								
Transvaal-....-.					P		P		P		P	P	P		P	P								
																	6							
esse S. 8. Manoa, from Honolulu to San Fra	cisco..			1																				
S. S. Muncaster, at Mauila from Hong	ong.-																							
Place		$\underset{1930}{ }{ }^{\text {June, }}$	$\begin{gathered} \text { July, } \\ 1930 \end{gathered}$		August, 1930					September, 1030			October, 1930				November, 1930			$\begin{aligned} & \text { De. } \\ & \text { 1-10, } \\ & 1080 \end{aligned}$				
					11-20								11-20				11-20	21-30						
		1-10					-st	1-10	11-20	21-s0	1-10	21-31		1-10										
Indo-China (see also table above) Ivory Coast. Syria: Beirut. \qquad C \qquad \qquad			213	238	38	59 34 ..-					54	52		86	32	62	164				8894310			
				34							P													
		18							3						2									
						,Sept., 1930			Place															
Place	1930	1930	1930	1930	1930			1030								1930	1930	${ }^{\text {A }} 1930$	1930	1900				
British Fast Africa (see also table above):					424				France \qquad 						5141818		$\begin{array}{r}1 \\ 8 \\ 3 \\ \hdashline-\cdots\end{array}$	$-\cdots$$->$8-						
	171 78	142	186																					
Chosen_.. ${ }_{\mathrm{C}}^{\mathrm{D}}$	69																							
	35			2																				
	1	1	2																					

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER—Continued
[C indicates cases; D, deaths; P, present]

Place	$\begin{gathered} \text { June } \\ \text { 29-July } \\ \text { 26, 1930 } \end{gathered}$	$\begin{gathered} \text { July } \\ 27-\text { Aug. } \\ 23,1930 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Aug. } \\ 24-\text { Sept. } \\ 20,1930 \end{gathered}\right.$	Week ended-													
				$\begin{gathered} \text { Sept. } \\ 27 . \\ 1930 \end{gathered}$	October, 1930				November, 1930					December, 1030			
					4	11	18	25	1	8	15	22	29	6	13	20	27
Algeria:																	
	6	2	3							1			2				
	2	3			2			1					1		1		
	3	1				1	2						3		2	-.---	--...-*
	10	1	4	2		1	3			1	2	1	1	3	6	-..--	
China:																	
	2	2	2	-------	-...--		1	--.---		--..--						
Chosen (see table below). Czechoslovakia (see table below).																	
Egypt: Alexandria. \qquad C	1	1	3	1						---	2	1	1				
			1								2						
	15		1	-----	----						--..-.					1	---*
		7	2												1	1	\cdots
		4	1		1			1	1						1		---*-*
Great Britain: Scotland-Dunfermline........................-	1																
Greece (see table below). Ireland:																	
Irish Free State-																	
	2																
	1																
Mayo County- Ballina.	1																
Castlebar ...	--...-	1															
Westport	2	1															
	1																
	1																
Latvia (see table below). Lithuania (see table below).																	

[^0]: ${ }^{1}$ From the Office of Statistical Investigations, U. S. Public Health Service. The numbers of States included for various diseases are as follows: Typhoid fever, 41; poliomyelitis, 43; meningococcus meningitis. 42; smallpox, 42; meas'es, 38; diphtheria, 42; scarlet fever, 41; influenza. 31.

[^1]: ${ }^{1}$ From the Office of Statistical Investigations, United States Public Health Service, and the Division of Research, Milbank Memorial Fund.

[^2]: ${ }^{2}$ Sufficiently detailed information on the age distribution of the population covered are not avallable for making adjustments of the percentages to a single age distribution. This refinement, however, does not seem necessary as the following distributions show:

[^3]: ${ }^{3}$ At this writing sufficient records are not yet available from the morbidity study now under way to warrant any conclusions as to the completeness of reporting in rural parts of the county. In Olean, however, the cases appearing on the sickness records of about 540 children in one of the graded schools for 2 years were checked against the reports made to the health department with the following result:

[^4]: "Sydenstricker and Hedrich (15) using the data obtained by house-to-house canvasses and the reports to the health department in Hagerstown, Md., made the following estimates for measles, whooping cough, and chicken pox:

[^5]: ${ }^{6}$ The results of the Shelburne-Buckland survey are summarized in the following table from Lombard and Scamman's paper (11, p. 628):

[^6]: ${ }^{6}$ The reported incidence of scarlet fever in these years was about ten times the incidence usually reported.

[^7]: ${ }^{7}$ The ratio of the Cattaraugus percentages to those of Hagerstown for successive age periods beginning with 5 to 9 years are $7.0,8.3,4.3,4.2$, and 3.2 to 1 .
 ${ }^{8}$ The low immunity in Cattaraugus has been corrected to a considerable extent by the administration oi toxin-antitoxin, as the following histories of immunization against diphtheria for the population under study show:

[^8]: - It is planned to make a comparison later with an urban area having more modern water supply and excreta disposal facilities.

[^9]: 10 This indication may seem somewhat surprising in view of the Army experience during the World War. It will be recalled that the incidence of measles among recruits from rural areas was higher than that among recruits from urban areas. (See Siler, J. F.: Communicable and Other Diseases, Vol. IX, in the Medical Department of the U. S. Army in the World War, pp. 416-417; and Long, A. C., and Davenport, C. B.: The Immunity of City Bred Recruits, Archives of Internal Medicine, 24:129.) It may be suggested, however, that the great majority of recruits were under 25 years of age. Furthermore, the smallness of our urban and rural samples should be kept in mind; further data are necessary for dependable generalizations.

[^10]: ${ }^{1}$ A study of the pollution and natural purification of the Illinois River. II. The plankton and related organisms. By W. C. Purdy. Public Health Bulletin No. 198.

[^11]: ${ }^{1}$ Deaths of nonresidents are included. Stillbirths are excluded.
 2 These rates represent annual rates per 1,000 population, as estimated for 1930 and 1929 by the arithmetical method.
 ${ }^{2}$ Deaths under 1 year of age per 1,000 live births. Cities left blank are not in the registration area for births.
 4 Data for 73 cities.
 Deaths for weel ended Friday.

 - For the cities for which deaths are shown by color the colored population in 1920 constituted the following percentages of the total population: Atlanta, 31; Baltimore, 15; Birmingham, 39; Dallas, 15; Fort Worth, 14; Houston, 25; Indianapolis, 11; Kansas City, Kans., 14; Knoxville, 15; Louisville, 17; Memphis, 38; Nahsville, 30; New Orleans, 26; Richmond, 32; and' Washington, D. C., 25.
 i Population Apr. 1, 1930; decreased 1920 to 1930; no estimate made.

[^12]: ${ }^{2}$ Figures for 1930 ars for 2 weeks.

 - Week ended Friday.

[^13]: ${ }^{1}$ Pulmonary.
 ${ }^{2}$ Reports received weekly.
 Exclusive of Oklahoma City and Tulsa.

[^14]: The figures given in this table are rates per 100,000 population, annual basis, and not the number of cases reported. Populations used are estimates as of July 1, 1930, and 1929, respectively.
 ${ }^{2}$ Raleigh, N. C., Shreveport, La., and Denver, Colo., not included.
 ${ }^{8}$ South Bend, Ind., Raleigh, N. C., Fort Smith, Ark., and Shreveport, La., not included.
 ${ }^{4}$ Hartford, Conn., Grand Rapids, Mich., Raleigh, N. C., and Shreveport, La., not included.
 Salt Lake City, Utah, not included.

 - Hartford, Conn., not included.
 ${ }^{7}$ South Bend, Ind., not included.
 ${ }^{8}$ Grand Rapids, Mich., not included.
 - Raleigh, N. C., not included.
 ${ }^{16}$ Shreveport, La., not included.
 ${ }^{11}$ Fort Smith, Ark., and Shreveport, La., not included.
 usenver, Colan not included.

